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LONGITUDINAL STABILITY AND CONTROL DERIVATIVES
OF A JET FIGHTER AIRPLANE EXTRACTED FROM FLIGHT TEST DATA
BY UTILIZING MAXIMUM LIKELIHOOD ESTIMATION

By George G. Steinmetz, Russell V. Parrish,
and Roland L. Bowles
Langley Research Center

SUMMARY

A method of parameter extraction for stability and control derivatives of aircraft
from flight test data, implementing maximum likelihood estimation, has been developed
and successfully applied to actual longitudinal flight test data from a modern sophisticated
jet fighter. The results of this application establish the merits of the estimation tech-
nique and its computer implementation (allowing full analyst interaction with the program)
as well as provide data for the validation of a portion of the Langley differential maneu-
vering simulator (DMS). The results are presented for all flight test runs in tabular form
and as time history comparisons between the estimated states and the actual flight test
data. Comparisons between extracted and manufacturer's values for five major deriva-
tives are presented and reveal good agreement for these principal derivatives with the
exception of the static longitudinal stability derivative Cma' This particular derivative
is extensively investigated by utilizing the interactive capabilities of the computer pro-
gram. The results of this investigation verify the numbers extracted by maximum likeli-
hood estimation.

INTRODUCTION

A method of parameter extraction for stability and control derivatives of aircraft
from flight test data has been developed at the Langley Research Center (ref. 1). This
method utilizes maximum likelihood estimation, an advanced mathematical theory, and
has been fully implemented on the Langley Research Center real-time digital complex
(ref. 2). The casting of the digital program in such a framework permits the analyst to
interact with the program through a control console and cathode ray display.

Applying the computer program to actual flight test data from a modern sophisticated
jet fighter airplane (fig. 1) serves a dual purpose: first, to establish the merits of the
computer program and, second, to provide additional means of validating the Langley




differential maneuvering simulator (DMS) program (ref. 3). The successful extraction of
stability derivatives from real-world flight test data goes a step beyond the use of analyti-
cally generated data toward establishing the creditability and merits of any estimation
technique. The documentation of the aerodynamic characteristics of the test airplane
(ref. 4) is extensive and is currently being used as a prime source for the DMS program
package. The DMS provides dual-cockpit fixed-base simulation in which the two piloted
vehicles can be operated jointly or individually in either a cooperative mode or an uncoop-
erative mode. The flight tests themselves and the parameters extracted serve as addi-
tional means of validating the DMS for this particular airplane.

The flight test runs utilized in this study are longitudinal responses generated by
stabilator deflections in the neighborhood of +5°. The changes in angle of attack and
pitching velocity are typically +10° and +20° per second, respectively. Normal accelera-
tion responses are between +4g and -1g. The parameters extracted were the standard
body-axis longitudinal stability and control derivatives.

SYMBOLS

Measurements and calculations were made in the U.S. Customary Units. They are
presented herein in the International System of Units (SI) with the equivalent values in the
U.S. Customary Units given parenthetically.

ag normal acceleration (positive down), g units
Cm pitching-moment coefficient
Cm,o pitching-moment coefficient at ¢« =6=0
oC
Cm q° T per radian
o( <
&
8C, 9Cp
Chm.+Cm. damping-in-pitch derivative, ——+ ——, per radian
¢ a(@l_c) 5(6T
2V, 2V
8C
Cma static longitudinal stability derivative, —a&rﬂ, per radian
aC
C., . = —= per radian
¢ HfaT
2V



(Cm)aT,é

pitching-moment coefficient at « = @rp, 0= 0

T
. . . aC]fn .
Cm6 pitch-control-effectiveness derivative, 53 Per radian
Cx longitudinal-force coefficient
8Cx
Cy = per radian
M
2V
aCX d.
CXa = 8—a—per radian
(CX) longitudinal-force coefficient at «a = gy 0= bp
A ,0
T
Cy normal-force coefficient
Cy 6 normal-force coefficient at ¢ =6=0
8C,
Cyz = per radian
Py
2V,
8Cy
Cy slope of normal-force curve, ———, per radian
o o

(Cz)

ozT,GT
C
Czp= a?zs&
c
g
Iy
M

normal-force coefficient at « = Qs 6= GT

per radian

mean aerodynamic chord, meters (ft)
acceleration due to gravity, meters/second2 (ft/sec2)
aircraft moment of inertia about the Y-axis, kilogram-meters?2

Mach number

(slug-ft2)



mass of fueled airplane, kilograms (slugs)

pitching angular velocity, radians/second

pitching acceleration, radians/second2

dynamic pressure, %—sz, newtons/meter2 (lb/ft2)

wing area, meters2 (ft2)

velocity along horizontal body axis, meters/second (ft/sec)
acceleration along horizontal body axis, meters/second2 (ft/sec2)
true airspeed, meters/second (ft/sec)

velocity along vertical body axis, meters/second (ft/sec)
acceleration along vertical body axis, meters/second2 (ft/sec2)
angle of attack, radians

rate of change of angle of attack, radians/second

trim angle of attack, radians

stabilator deflection angle, radians

stabilator deflection angle at trim, radians

pitch angle, radians

rate of change of pitch angle, radians/second

mass density of air, kilograms/meter3 (slugs/ft3)

natural frequency of the pitching-moment oscillation for controls locked,
radians/second



FLIGHT TESTS

The flight test data were provided by the U.S. Naval Air Test Center at Patuxent
River, Maryland. The flight tests were conducted by Navy test pilots as part of an inves-
tigation with a McDonnell Douglas F-4 airplane. Five different longitudinal response runs
were made: three during one flight test of the airplane and two during a second flight test.
The first three runs were made at an altitude of approximately 1524 m (5000 ft) and at
Mach numbers of about 0.6, 0.7, and 0.8, respectively. The other two runs were made at
an altitude of approximately 6096 m (20 000 ft) and at Mach numbers of about 0.6 and 0.8,
respectively. The stability augmentation system (SAS) was deactivated in order to pro-
vide full response for all the test runs.

For each of the test runs the procedure was identical. The airplane was trimmed
by the pilot at the desired altitude and Mach number and held for a short period, and then
a disturbing input was placed on the stabilators. The pilot task during the maneuver was
to null any lateral motions. Since thrust was held constant during the maneuver and since
altitude and Mach number were approximately constant throughout the maneuver, the
translational modes of the airframe were not sufficiently excited to allow extraction of
the longitudinal-force coefficient. A time history of the stabilator position for a typical
test run is shown in figure 2(a). Shown in figure 2(b) are typical time histories of hori-
zontal velocity u, vertical velocity w, pitching angular velocity g, and normal accelera-
tion ay. True airspeed was first determined from figure 1 of reference 5 using Mach
number, pressure altitude, and temperature from flight tests and then resolved through
angle-of-attack measurements to yield horizontal and vertical velocities.

Angle of attack was measured by means of a vane on a nose boom. The boom was
assumed to be rigid. The readings were corrected for pitch by the Navy. Pitching veloc-
ity was measured by rate gyros located slightly forward and at the foot level of the pilot.
Normal acceleration was measured by an accelerometer located in the left wheel well.
The location of the instrumentation is shown in figure 1. However, the center-of-gravity
offset of the accelerometer was negligible for longitudinal responses. (No documentation
was available from the Navy as to the accuracy of the instrumentation.)

The data for each run were sampled at 0.1-sec intervals. Each of these points was
used by the computer program but every other point is plotted in all time history figures
to avoid crowding. No smoothing techniques were applied to the data provided. The data
were supplied to Langley Research Center in tabular form but were transferred to mag-
netic tape for use with the computer program.



COMPUTATIONAL METHOD

The equations of motion used by the computer program for longitudinal motion are
as follows:

2 c
- . 1 PV4S _ qc
0=-gsing-Wq+5—5H— [(CX)O[ 5 + CXa(a aT) +Cx Z—VJ

2 -
W =g cos § +uq + %%ECZ)QT,GT + Cza(a - aT) + CZq (21—;+ CZ5(6 - GT)J

. v2se e T
oo %p - c[(cm)aT’éT + Cm (@ - ag) + Cmy, 2o+ Cimg ‘21—;+ Crng (6 - 5T)]

f=q
a;, =W - gcosf-qu
a=tan‘137—

V = |u2 + w2

~ Again, it should be noted that the form of input excitation (pitch doublet yielding the
short-period motion) makes the extraction of longitudinal-force coefficients (CX deriva-
tives) infeasible, since u is negligible. However, the program extracts a set of Cx
derivatives that provide a longitudinal response to match the flight data; thus, a proper
representation of true airspeed is ensured.

The method of parameter estimation incorporated into the computer program is
based on maximum likelihood estimation. This method is inherently iterative and requires
an initial estimate for each derivative in order to begin the extraction process. Refer-
ence 1 describes in detail both the method of extraction and the computer program. It
should be emphasized, however, that the procedure for extracting the derivatives is not
straightforward. Engineering judgment tempered with estimator statistics, such as the
variance of individual derivatives and intercorrelation coefficients, plays a significant
role in the extraction procedure; thus, the capability of analyst program interaction is
highly desirable.



RESULTS

Figure 3 illustrates the response of the mathematical model to a typical set of
starting values; the flight data are included for comparison. Usually 8 to 10 iterations
are required before initial convergence is obtained. From this base, engineering judg-
ment and statistical information are used to eliminate all possible inconsistencies between
aerodynamic principles and statistical results.

The conditions for the five flight tests are listed in table I. In figure 4 are presented
the model responses generated by the final estimates of the stabilify derivatives for the
five flight test runs and the respective flight test data. Again, it should be noted that the
flight data displayed have not been filtered.

The total set of extracted stability and control derivatives for each flight test run
and the standard deviation of each derivative are listed in table II. The intercept deriva-
tives Cgz o and Cpy o are defined at zero angle of attack and zero stabilator deflection.

From the set of extracted derivatives for the test airplane, the five principal deriv-
atives Cza’ CZ(,, Cma’ Cmq + Cmg, and Cmé are plotted as a function of Mach
number and compared with the manufacturer's data for an earlier version in figures 5 to
9. (It should be noted that the center-of-gravity variation between the flight test runs is
less than 0.55% about 31.80% €.) Aerodynamic differences between the two airplanes are
believed to be small and, hence, two different sets of estimates of the principal derivatives
exist to predict airplane response.

The five principal derivatives taken from the manufacturer's data were fixed as
constants in the program and the minor derivatives <(CX)aT’6T’ CxXyo Cxq, (CZ)O‘T’GT’

Czq, (Cm)aT’éT) were extracted from the flight data by the maximum likelihood algo-

rithm. This procedure yielded the model responses presented in figure 10 for the five
flight test runs. These results clearly indicate an error in both frequency and amplitude
for normal acceleration ay and an error in amplitude for vertical velocity w. The
issue now is to uncover the manufacturer's estimates that give rise to the errors. Exam-
ination of figures 5 to 9 reveals that the largest discrepancy occurs in the estimates of
the static longitudinal stability derivative Cy, o and, therefore, the error analysis was
begun with this derivative.

The principal derivatives taken from the extracted set were used in conjunction with
the manufacturer's values of Cm, to generate the responses shown in figure 11; the
minor derivatives were extracted in the usual manner. These results clearly indicate an
error in frequency for all the variables.

In a final attempt to use the manufacturer's value of Cu o this derivative was
fixed at the manufacturer's value and the algorithm was allowed to select the values of



all other derivatives. This procedure converged for all flight test runs with the exception
of test run 4, which diverged. The resulting model responses with the respective flight
test data are presented in figure 12 for test runs 1, 2, 3, and 5. Again, an error exists

in both frequency and amplitude for normal acceleration a, and an error exists in ampli-
tude for vertical velocity w.

On the basis of these results, it is concluded that the flight test data require a much
lower value for the static longitudinal stability derivative Cm, than that presented by
the manufacturer. As further verification of this conclusion, values of the static longitu-
dinal stability derivative were calculated by using the following equation:

w. 2T
Icma|= (I_;SEY (1)

These calculations were made from the flight test data after input excitation had essen-

tially ceased. The results of these calculations are presented in figure 7. The calcula-
tions yielded values of Cma which agreed more closely with the extracted values than
with the manufacturer's data.

At this point in the error analysis, at least one discrepancy has been shown to be
significant. To determine discrepancies among the remaining four principal derivatives,
the following procedure was used. The four principal derivatives taken from the manu-
facturer's data were fixed as constants in the program, and the minor derivatives as
well as Cm, were extracted in the usual manner. This procedure yielded the model
responses presented in figure 13 and the variation of Cp,, with Mach number presented
in figure 14. Although the model responses for this procedure are quite good, the least-
squares residual for fitting the flight data is inferior to that of the extracted set presented
in table II. Therefore, it is believed that good agreement exists for all principal deriva-
tives with the exception of the static longitudinal stability derivative Cp,,. Also, it
should be noted that this procedure yielded values for Cyy o that agreed more closely
with the extracted values than with the manufacturer's data.

CONCLUDING REMARKS

It is believed that the agreement between the extracted values and the manufacturer's

data for four of the five principal derivatives (Cza’ CZG’ Cmgy + Cmy, Cmﬁ), and the

a
extensive investigation carried out on the fifth principal derivative Cm o establish not

only the merits of maximum likelihood estimation in a real-world environment but also
the merits of the interactive capabilities of the computer implementation utilized to carry
out the investigation. The investigation of Cpy o revealed that the flight test data require



a much lower value for the static longitudinal stability derivative than that presented by
the manufacturer.

The present study also provided some of the data to validate the Langley differential
maneuvering simulator (DMS) program.

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., January 19, 1972,
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TABLE I.- FLIGHT TEST CONDITIONS

Altitude
Test run
m ft
1 1524 5 000
2 1524 5 000
3 1524 5000
4 6096 | 20 000
5 6096 | 20 000

Mach
number

© o> o3>

Input

Pitch doublet
Pitch doublet
Pitch doublet
Pitch doublet
Pitch doublet

Excitation

Short-period motion
Short-period motion
Short-period motion
Short-period motion
Short-period motion

Center of
gravity

31.80% ¢
31.47%¢
31.27% ¢
32.22% ¢
31.52% ¢
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TABLE II.- EXTRACTED STABILITY AND CONTROL DERIVATIVES

Test run 1 Test run 2 Test run 3 Test run 4 Test run 5 »
(c.g. =31.80%¢€) (c.g.=31.47%7CT) (c.g.=3127%7T) (c.g.=32.22%T) (c.g.=31.52%7C)
Derivative
Extracted Standard Extracted Standard Extracted Standard Extracted|Standard Extracted|Standard
value deviation wvalue deviation value deviationv value |deviation] value |deviation
Cm,o 0.0193 0.00008 0.0156 0.00008 0.0148 |, 0.0002 0.0217 | 0.0001 0.0177 | 0.0001
Cma -.106 0017 -.126 .0026 -.167 0037 -.109 .0009 -.163 .0013
Cmq + Cmd -3.32 .06 -3.11 .08 -3.30 A1 -4.09 .04 -3.93 .05
Cm5 576 009 .555 015 .540 .020 .618 .010 .600 010
CZ,o -.080 .004 -.086 .004 -.106 .005 -.025 .004 -.049 .004
CZa -3.36 07 -3.33 .10 -3.64 .10 -3.50 .04 -3.78 .06
CZ6 .346 .018 .334 .019 325 022 372 .018 .361 017
Czq Unidentifiable due to insensitivity




Accelerometer

Basic instrumentation-
Accelerometer

L4
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N
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Figure 1.- Diagrarh of test airplane.
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(a) Time history of stabilator deflection angle.

Figure 2.- Typical flight data.
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Figure 5.- Variation of Cza with Mach number.
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Figure 7.- Variation of Cma with Mach number.
All data corrected to c.g. = 319%C.
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Figure 8.- Variation of Cmq + Cmj with Mach number.
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Figure 9.- Variation of Cp, § With Mach number.
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(b) Test run 2.

Figure 13.- Continued.
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Figure 13.- Continued.
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Figure 13.- Continued.
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Figure 13.- Concluded.
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